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A system of coupled oscillators can have arbitrary prescribed 
attractors 

S A Vakulenko 
Institute of the Problems of Mechanical Engineering, Bolshoy 61, VO St Petersburg 199178, 
Russia 
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Abstract A system of coupled nonlinear oscillators is considered. If the size N of this 
oscillator nehvork is large mough, then the model can have arbitrary prescribed attractors 
which can be defined by some finite-dimensional flows. One can eKectively find a simple 
interaction between the oscillators which gives these prescribed aitractors. 

1. Introduction 

The investigation of attractors for nonlinear dissipative.systems is an important but 
difficult problem. Excepting for so-called monotone systems [ 1-41 and systems possess- 
ing Lyapunov functions [5,6], this problem is not solved analytically and usually here 
one applies tomputer calculations. 

For example, a lot of recent works 17-1 I ]  describe networks of associative memory. 
One can consider such networks as nonlinear dissipative systems which have a lot of 
local attractors. In the simplest cases these attractors are steady states (stable rest points 
in a phase space). Certain1y;there are non-trivial situations which are more complicated. 
The standard approach is by use of computer calculations that allow us to investigate 
non-trivial attractors. 

In this paper another approach is suggested: we solve an inverse problem. For 
some prescribed attractors, one can find classes of dissipative systems which have these 
attractors. Namely, let Q, . . . Qp be prescribed attractors defined by ordinary differen- 
tial equations (ODE) 

dy/dt= Y@'(y) Y'(YI . .  . Y") (1.1) 

where Yck)  are fields on R". The main result asserts that one can construct some special 
classes of nonlinear dissipative systems (similar to neural networks or coupled oscillator 
systems). These systems have the prescribed attractors @li if model parameters are 
chosen in a special way. More exactly, one has attractors 4; close to prescribed ones. 
The sets & are connected with @l by homeomorphisms which are close to the identity. 
Certainly, if n>2, then the prescribed attractors can be chaotic or periodic. 

If the size of our system N (the number of oscillators) tends to infinity then the 
number P (which defines the number of prescribed local attractors) also tends to infinity 
although generally P<< N. 

0305-4470/94/072335+ 15919.50 0 1994 IOP Publishing Ltd 2335 
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The paper is organized as follows. In section 2 we formulate the model, prove the 
existence of solutions and discuss connections with previous classical studies. In section 
3 we investigate the local attractors of the unperturbed model and describe the standard 
perturbation theory. In section 4 we solve the inverse problem. We find the coefficients 
J giving the prescribed attractors. Finally, section 5 contains a discussion. 

To conclude this introduction, we point out that there exists a very simple general 
method which allows one to construct different examples of system with a prescribed 
large time behaviour (with prescribed local attractors). Let us take the evolution equa- 
tion in a Banach (or Hilbert) space H 

U,= v ~ ~ + ~ ( ~ ) + a g ( ~ )  (1.2) 
under some natural assumption on linear operator A and nonlinearities Fand G. Sup- 
pose unperturbed equation (1.2) (with 1=0) has some a priori bounded Lyapunov 
function [5] and also is invariant under some symmetry group r. As for g, here, on the 
contrary, one assumes that g is non-invariant. Then one can expect that the unperturbed 
equation has some invariant manifolds consisting of equilibria. If the perturbation g 
acts, then at these manifolds M a  complicated motion can occur. Choosing the appropri- 
ate g one can create different complicated attractors or invariant sets [12-141. For 
example, in [ 13,141 new nonlinear effects are described for reaction-diffusion systems, in 
particular, localized chaotic nonlinear waves [ 131 and complicated bifurcations between 
different hyperbolic sets [14] (arising when v varies). 

Qualitatively, for small 1 the time behaviour of solutions (1.2) can be described 
very simply (although rigorous mathematical proof of such a picture can be difficult). 
During time interval [0, TI (where T>>O(I) and T<<O(h-')), the evolution u ( f )  can be 
described by the unperturbed equation. As a result, this solution holds at some unper- 
turbed stable equilibrium manifold M. For t>>O(1-'), the perturbation g should be 
taken into the consideration, thus, there arises a finitedimensional flow (the dimension 
is equal to Dim M). 

To obtain non-trivial results, here it is useful to take a large symmetry group, for 
instance [U( 1)IN. Such a group occurs in the coupled oscillator system considered below. 

2. Model. Phase space and existence 

Our model has the form 

duj(t)/dt =f (I u,I2)u,(O + 4 C [ i J b ( t )  +J,?idW)I}ujW L Uj(t)E@ (2.1) 

where u,(t) are unknown complex functions, U =  (u l ( t ) ,  y ( t )  . . . uN(f)) ,  the index j runs 
on some subdomain Q of the lattice H" and where I Q /  =N. For any nodej the values 
2, are chosen so that the contribution of 1 in (2.1) is a small perturbation with respect 
to the t e m J  One assumes that 

UJ(Z)= f(s)ds f€C2 (2.2) 6 
and the potential @ has a simple form with a single positive local maximum at  z= 1. 
For example, one can suppose that 

f ( O ) < O  f(I)=O f ' ( l ) < O  f y z )  GO for any z>O.  (2.3) 
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This means, in particular, that @ has an upper bound. The coefficients J are real 

J ; ~ ,  J , :ER.  (2.4) 

Finally, one supposes that q has a more exotic form. Namely, the function q(Re U, 
Im U )  : R2 + C satisfies the following conditions 

(a) Iq(u)l < + I  q d 2  (2.5) 

(b) q(u)dn(u) for UE V (2.6) 

where Vis some neighbourhood of circle 1111 = 1. Notice that function q is not an analytic 
function of complex variable U, however, it is a smooth function of Re U ,  Im U .  

The coefficients of J can be large (this will be important below). Thus, to restrict 
the perturbation, we should assume that 

, - I  

where 

O<'E j<& for any j 

where E is a small parameter. 
One considers (2.1), under these assumptions, in the metric phase space 

U,= {U: < C for all j }  (2.9) 

1u1 =maxlu,l. (2.10) 

where Cis  an arbitrary constant, C> I. The topology of U, is defined by the norm 

The following assertion shows that U, really is the appropriate phase space. 

Proposition 2.1. Assume conditions (2.2-2.8) hold ahd C> 1. If initial data LI 

v j=U,(o)  (2.11) 

U(t) E uc forallt>O. (2.12) 

lie in U,, and E is small enough, then the solution ~ ( t )  is apriori bounded 

Thus, equations (2.1) define a global flow in UC. 

Proof. See appendix. 

To conclude this section, let us discuss connections with some classical physical 
models. First one notices that one can add to the right-hand side of (2.1) the discrete 
Laplacian dAu. For example, when C 2 s R  one has Auj=uj+,-2u,+uj-l. Then again 
key proposition 2.1 holds. Ifdis small enough, the solution behaviour will be analogous. 

In this case the unperturbed equation reminds one of the discrete variants of the 
classical TDGL equation (time-dependent Ginzburg-Landau equation) 

U, = dAu +f(l U[*)U.  (2.13) 



2338 S A  Vakuienko 

This fundamental model was investigated by classical works [15, 161. A continuous 
variant of our model is an evolution equation with the non-local interaction 

W x ,  f ) / a f = A u ( x ,  f)+f(u(x, fMx, 0 + J(x, Y ) .  dv)) dv. (2.14) 

Such equations (and even more complicated versions) can occur in polymer theory 
[17, 181. The result obtained can probably be generalized in this case, however, this is 
a more difficult problem. 

s 

3. Attractor of unperturbed model. Perturbation theory 

Due to assumptions (2.3), the unperturbed model ( E = O )  can easily be investigated. As 
follows from (2.3) and assumptionson Q, the functionfhas a single root 5 

f ( 5 ) = 0  0<<<1. (3.1) 

U, =f (I U12).. (3.2) 

r,= f ( r 2 ) r .  (3.3) 

If & = O  system (2.1) reduces to the independent equations 

I t  is easy to see that module r= IuI satisfies 

Thus, equation (3.2) has two attractors BO= {/U\ = O ]  and BI = {\U/= 1) with the attrac- 
tion basins, respectively 

I, = {O < Iu12< 5) a*= {I U 1 5  5 )  . (3.4) 
Returning to (2.1) with E=O,  one obtains that the unperturbed equation has a number 
of attractors B(SL'). Each attractor is defined by some subset i2' of C2 and has the form 

(3.5) 

The attraction basin of B is 

&+(U) = {\U,{'> 5 if j& 0 <I ujl < 5 ifjea'} . (3.6) 
Thus, we have 2N local attractors of the unperturbed system. For some e, in some 6- 
neighbourhood V6(B(Q')) 

Vs={u:dist(u,B(n'))<6} (3.7) 

dist(u, B)=inf supluj-vjl (3.8) 

one can develop a perturbation theory using standard results on invariant manifolds. 
Let some set C2' be fixed. In the described neighbourhood (for enough small 6, however, 
positive 6 does not depend on E as E + 0) one uses special coordinates (4, U), where 

where 

uaB j 

ui=exp(ib)(l +f+) jsC2' (3.9) 
ui=u, jfi2'. (3.10) 

Here the vector .$ has N'= 101 components. 
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For jsn '  one sets, in addition, in order to obtaina one-to-one map K+ (4, U), that 

Im uj=O jsn'. (3.11) 

This changing of coordinates has a simple geometric meaning; namely, if (3.1 1) holds, 
then the point i(4) 

(3.12) 

is the nearest point of B with respect to uj, and maxlu,l is the distance between B(C2') 
and U. It is easy to check that if 6 small, then u-(#(u) ,  U@)) is a one-to-one map 
with an inverse map 4, U --t U(#, U). Using these coordinates in Vs one reduces (2.1) to 
the form (following a standard procedure 15, Ch. 6,9]) 

u,=Au+F($, U) 

4t=Q,(#, 0 ) .  

The linear operator A has the form 

(AU)j=zf'(l)vj j sn '  

(Au),=f(O)vj jgn'  

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where the functions Q, and F can be written in the form 

Qj= Aj Im gj( U) jsn' (3.18) 

Fj(4,u) =A([+ vj)')(1 +uj) -2f'(l)~j+ajX (1 + v j )  x Reg,@(#, 0) )  

=h(uj)+Lj(l + u j )  Reg(uj(4, U)) ~ forjen'  (3.19) 

(3.20) 4 ( 4 , ~ )  = M I  vi I *) -fW + asj (U($.  U))] 0, 

and where g is defined by 

forj$n' 

g, = c [ir:kr,(t) +J$q(ux(t))l. (3.21) 
k 

Lemma 3.1. Suppose that the following inequality holds at the initial moment 

Iu(O)l=maxIu(O)l<F. (3.22) 

If 6 is small enough, there exists a number EO such that for 0 < E <  c0 there is an apriori 
estimate 

(3.23) 

J 

maxi uj(t)l <min[6, C6 exp(-xt) + E ] .  
j 

Proof: See appendix. 

Now one can easily prove the existence of an invariant manifold M(Q') by standard 
methods [5, Ch. 61. In fact, here the operator A has the property of trivial exponential 
dichotomy 

I(expAt)ul <cexp(-xt)lul. (3.24) 
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Thus, here we deal with system (3.14) and (3.15) having a typical form with the slow 
variable 4 and the quick one U. Following [5 ,6]  one can check (using lemma 3.1) that 
this manifold M(Q’) has the equation 

1) =a($) (3.25) 

and the following estimates hold: 

ICTJ<C& 14(4)1 < C E .  (3.26) 

This manifold is stable and attracts all solutions from V, with an exponential rate. 
Thus all local attractors and invariant sets in Vb lie on invariant manifold M(n’). The 
dynamics of 4 on A4 are defined by the ordinary equations 

d4AO/dt=QA4, 44)) .  (3.27) 
Using estimate (3.27), one can obtain from lemma 3.1 the following auxiliary assertion. 

b m m a  3.2. The field Q, has at least C’-smoothness and has the form 

u?=zO($,Q’)+Z’(l$,a.) (3.28) 

where the correction 2’ satisfies the estimate 

l21, =Izllcl<cE. (3.29) 

The field .Z? has the explicit form 

z;=.zj Im gj(i(4),  0) (3.30) 

where I7 is defined by equation (3.12). 

Proof. It is obvious from the following simple deductions. The function u? falls into the 
two contributions 

Q =,?? + Z’ =Aj Im g(C(4), 0) +A,[(Img(G($), U) -Img(I7($), 0)] . (3.31) 

It is clear from (3.31) that 

(3.32) 

To conclude this section, one notices, that the field .Z? can be rewritten in the more 
explicit form 

(3.33) 

J .  This will be used ifi section 4. 

4. Solution of inverse problem 

In this section we solve the following inverse problem. Let some local attractor 9l 
(which attracts each point from a neighbourhood V(9l)) be given. Let this set % be 
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structurally stable (for example, a hyperbolic set [19]) and be defined by the flow 

dy/dl= Y(Y) Y=(YI,Y2,...,Y"). (4.1) 

Our aim is to find coefficients qk such that system (2.1) has the local attractor B(M, J )  
which is close to e. To be more precise, B(W, J )  and "2 should be connected with a 
homeomorphism Twhich maps trajectories y ( f ) 4  of (4.1) into trajectories E, and T 
should be close to the identity I :  + 

IT-4<6. (4.2) 

dy/dt= F(y, z)  (4.3) 

dz/dl=Z(y, z) (4.4) 

To solve this inverse problem one transforms (4.1) into the system 

with a close attractor. This new system bas a higher dimension and also has an invariant 
manifold a. On this manifold the flow defined by (4.3) and (4.4) can be reduced to 
the system 

dy/dt= F(y) (4.5) 

19- yl<6, (4.6) 

where 

in the neighbourhood of V. Then, using the persistence hyperbolic sets theorem [19,20], 
one obtains that system (4.5) has an attractor & such that 

?-(e)=& (4.7) 
and (4.2) holds. 

%. One can set 
To construct this transformation, let us consider (4.1) in a box rI which contains 

rI= {O < yi< 2nj . (4.8) 
Outside I3 one can continue Y so that Y is periodic. Then 

(4.9) 

where 

k=(k, ,  k2.  . . kn) k,Eh k . y = kaS. (4.10) 

One can cut off row (4.9) so that 

F(y)=  C Y(k)exp(ik.y). 
14 CX 

(4.11) 

The difference between the fields 9 and Y will be small if K is large enough. One 
considers the system 

dy,/dt=Re 1 Y,(l)  exp(iz(f)) (4.12) 
111 c K  

dz(k)/dt=Re 1 (k.  Y(f)) exp(iz( l ) ) -a(z(k)-Ck,y , )  (4.13) 
I l l  <K 

where l is the multi-index ( I1  , . . . , In), a > 0. 
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System (4.12) and (4.13) has the invariant manifold M 

z ( 0  = c LYa (4.14) 

Flow (4.12) and (4.13) on M can be reduced to the form (4.5). Setting w( l )  = z ( l )  - I .  y ,  
one finds 

dw(l, t)/dt= -aw(f, t ) .  

Thus 

/w(l ,  t)l <cexp(-at) 

(4.15) 

(4.16) 

and one concludes !hat M is a stable manifold and trajectories~ (4.12) and (4.13) tend 
to those of (4.5) with an exponential rate. 

Finally, here one obtains the following auxiliary assertion. 

Lemma 4.1. If system (4.5) has a hyperbolic (more generally, persistent under Cl- 
perturbations) attractor %, then system (4.12) and (4.13) also has a hyperbolic attractor 

with close trajectories. Moreover, relation (4.7) holds together with estimate (4.2). 

To solve the inverse problem, let vs now choose the coefficients J;* in a special way. 
Let us mark out the nodes j ,  , . . . , j ,  from R setting Ql = { j l  , . . . , jn}. Let s ( j )  be 

the index of node j from Q,, for instance i f j = j l ,  then s= 1, $j=j2, then s=2, etc. 
Furthermore, let j ( k )  be a one-to-one mapping which maps each multi-index k =  
(kl , k 2 , .  . . , k"), IkJ <Kinto the node j c a ,  where the set Q2cQ\QI. The correspond- 
ing inverse map will be denoted by k f j ) .  Let N2= lQ21. 

Let us now set 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

and 6,  is a small positive number. 
One also sets L=JD'J, i2'=Ql U&. If we identify the variables 4, and the variables 

Y ,  z by 

{41 , . .  . , ~ L ) c * { Y I , .  . . ,. ~ n ,  { ~ ( k ) } ,  k=k(i) . jcQz} 
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then system 

dWdt=@,$) (4.23) 

coincides with (4.12) and (4.13) with sufficient accuracy, if all &j are sufficiently small. 
Finally, the principal result of sections 2-4 is the following. 

Theorem 4.1. Let 

dy/dt= Y‘”(y) k = l , 2 , .  . . , P (4.24) 

be some prescribed systems of ODE, where y lies in the cub {O<yi<2a}, with some 
prescribed hyperbolic attractors 4Tk. Let the parameter E be small enough and the 
number N be’large enough such that O <  

Then there exist coefficients 4,. such that system (2.1) has equivalent attractors 4, 
& k ~ 4 T k  (in the sense that there exist homeomorphisms T described above satisfying 
(4.7) and (4.2)). 

for all j. 

The attraction basins of 91, contain the domains 

B(L&) = {I U,[ > g + &, i f j d h ,  I ujl < l-&, if j@& (4.25) 

where &. is sufficiently small and Qci2 are subdomains of a. 

ProoJ See appendix. 

5. Some remarks and discussion 

Let us discuss briefly the case of random connections J.  Assume the coefficients Zj 
have independent Gaussian distributions. Then the following result is trivial. 

Theorem 5.1. Let the number P of the prescribed hyperbolic local attractors 4TP be 
fixed. Let p N  be the probability of obtaining, with help of (2.1), the attractors eP which 
are equivalent to Qp, (this means that trajectories are connected with the help 
of some homeomorphisms). Then the probability pN tends to 1 as N tends to infinity: 

p N +  1 ( N  --f CO). (5.1) 

Let ns turn now to the problem of so-called parasite attractors. Suppose the prescribed 
systems (4.1) are structurally stable, for example, they satisfy the Smale A-axiom 
[19,20]. Notice, except for the prescribed attractors, dynamical system (2.1) can have 
a number of other attractors. These attractors can be called parasite attractors. 

It is easy to suggest a method which allows one to take off these parasite attractors. 
We can construct systems which have prescribed (and only prescribed!) local attractors 
coinciding with local ones for prescribed systems (4.1). One changes the first contribu- 
tion in the right-hand side of equation (2.1). Consider 
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Here J, L should satisfy the same conditions as in section 2, and Lis  some smooth real 
function of the vector uu* with components Iu,jz. Suppose L is bounded below 

L[UU*] > -c (5.3) 

and L has exactly P prescribed local non-degenerate minima in P different 
configurations 

luilz=5; p = l . .  . P i=l , .  . . , N (5.4) 

(f= 1 for some k implies 5[=0 for allpfk. (5.5) 

where 5; is zero or unity: .$=O or 1. Assume also that 

Such functions L can be constructed very easily. One can set 

L = - H ( x i ,  x Z .  . . x N )  x, = U#: (5.6) 

where H i s  some unknown potential relief. 
Let us connect points 5' with the help of some curve 2 which has no self- 

intersections. Moreover, let us suppose that the relief H has a narrow and sharp ridge 
along this curve. In other words, all the maxima of H are concentrated in some small 
neighbourhood of 2 (if H is a mountain height then all highest mountains lie at 2). 

Clearly, along 2 the function H can be considered as a function s where s is the 
arclength of 2. Now it is easy to comtruct a function H(s) with P prescribed maxima 
and having only non-degenerate extrema. 

To investigate the behaviour of solutions (5.2), one can use the same arguments as 
at the end of the introduction and in the proof of theorem 4.1 (see appendix). Finally, 
it is clear that, for some time t (depending on initial data), the 'generic' solution reaches 
some neighbourhood of the prescribed configurations. AI1 other configurations are 
excluded. More exactly, we know from [5] that non-degenerate saddle points and max- 
ima of the potential energy L attract only trajectories lying on some embedded submani- 
folds. In fact, this is a consequence of theorem 6.1.9 and 6.1.10 from [5 ]  since these 
points are unstable hyperbolic equilibria of dynamic flow (5.2) with L=O. Thus, the 
measure of the union of these bad (non-generic) trajectories is 0. If a generic trajectory 
exists in some small neighbourhood. of a prescribed configuration, then the following 
analysis of the trajectory behaviour does not depend on the detail of function L form. 
Thus, we can repeat it, following sections 3 and 4. 

Finally, if coefficients J are chosen as in section 4, we obtain only prescribed attrac- 
tors. These attractors were denoted above B(fZp) where fZp is the set of nodes i such 
that t$=1. Hypothesis (5.5) yields that attractors B(fZp) can be constructed 
independently. 

These results hold only if systems (4.1) (which should be simulated by our coupled 
oscillators system) are structurally stable. Such situation seldom occurs in real applica- 
tions. For example, even a Lorenz system is not hyperbolic and is not structurally 
stable. Stability properties of this system were studied in [21-231. Nonetheless, even in 
the general case, when the prescribed attractors are not hyperbolic, one can obtain 
some results. These depend on the smoothness of the right parts Y ( y )  of (4.1). If Y E  c" 
then one can guarantee that the trajectories of (2.1) lie near some prescribed attractor 
%' for time ccO(L-") where K>O is an arbitrary integer. However, we cannot assert 
(at least, from a rigorous mathematical point of view) that these trajectories remain 
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near % forever. The proof uses simple asymptotical calculations together with some a 
priori estimates (these can be obtained as in 119). 

Our solution of the inverse problem allows us to obtain unknown coefficients J 
giving prescribed attractors by explicit and closed forms (4.17)-(4.21). However, there 
is another approach which allows one to calculate J by computer and, thus, to check 
this model. This approach helps to determine the coefficients J for the important (from 
a practical point of view) situation when the explicit form of the right-hand sides of 
(4.1) are unknown, but we do have calculated or experimental trajectories 

y(to),y(to+h), . . . ,y(to+(n-l)h), y(to+nh) yew" (5.7) 

of the prescribed system (4.1). Suppose we know in advance that yeC'" with s> 1, 
moreover, without loss of generality, let us assume y , ( f ) E [ O ,  2n]. Our approximate 
method consists of the following steps: 

(1) Choose some subset C2' of the lattice R containing a sufficient number N = 
of nodes j .  This number should be chosen so that the attractor B(D) (which was 
described above, in section 4) can coincide with the attractor of (4.1). Clearly, N'cca(s)" 
where a(s) depends on the smooth parameter s (which defines the cut-off constant K, 
see (4.11)) and a(s) decreases as a function of s. Finally, let us choose some nodes 
i, , iz, . . . , i, which will contain angular variables $i. The corresponding values of 4 
will be used below for a comparison with data (5.7). 

(2) Consider the comparison functional 
n In 

S=(nm)-' (yj(to+kh)-4j(to+kh))z. 
X i  

(5.8) 

Clearly that the function depends on coefficient J. If theorem 4.1 holds then a minimum 
of S ( J )  is zero (practically, it should be a sufficiently small number). Thus, unknown 
coefficients J can be found as a minimizer of S. 

In sections 2-4,.noise is not taken into consideration. Clearly, from [24], the multipli- 
cative noise influence can be investigated. Consider the Laugevin equation 

I" 
.I. 

duj ( t )  =f ( l  uj(t)lz)uj(f) +A&. uj(t) + 6 H!y'(u) dwk (5.9) 
k=  I 

where wk are standard Wiener processes and HCk' are some vector fields, HEC. The 
number 6 is a positive small parameter. Under the influence of noise a trajectory u(t) 
(lying at first in the attractor B(Q')) can leave a neighbourhood VB of B. In  particular, 
the trajectory can enter some set Q. This set consists of states U which correspond to 
some non-appropriate behaviour: for example, it can correspond to a fatal error in the 
system behaviour. One can estimate the corresponding probability p(B ,  Q, 6)  (other- 
wise, estimate stochastic stability) as follows. 

Our analysis holds also for general dynamical systems 

du=F(u) df+ 2 H"'(u) d6Jk (5.10) 
k= 1 

where F, H'kleC" are smooth fields. 
Let us consider the probability p(B ,  Q, 6). This is the probability of travelling along 

some trajectory from the attractor B to the 'bad' set Q, for a time interval [O, TI. The 
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theory of small random perturbations of dynamical systems gives [24] 

R(B, Q) = lim S In p(B, Q, 6) 
6 -0 

=inf 7- in~~~’(D-’(du/dl-F(u), du/dt-F(u)) dt. (5.11) 

The matrix D in (5 .8)  is the matrix from the corresponding Fokker-Planck equation 
M 

Dii(u)= C H,(k)(u)H:”(u) (5.12) 

inf in (5.8) is taken over all trajectories from B to Q. Notice that R from (5.8) is positive 
if and only if there exists a trajectory from B to Q defined by the equations 

k-1 

(5.13) 

for some functions UW. 

mathematicians) that, generically, R is positive, thus 
The basic C Lobry result [25] shows (we omit some details of interest only to 

(5.14) 

The physical meaning of this result is very simple. It means that (in the~generic case) 
an arbitrary system simulating the prescribed behaviour gives non-zero probability of 
a ‘fatal error’, if the size N of the system is bounded. Only in the thermodynamic limit 
(large systems) can one create a system with stable behaviour. Of course, from the 
physical point of view, this is a trivial assertion. 

p(B, Q, S)ocexp(-c(N,B, Q)S”) as 6+0. 

6. Summary 

The investigation of attractors is, probably, the central problem of nonlinear dissipative 
system theory. However, it is a formidable task! In fact, most rigorous papers estimate 
only the attractor dimension. In reality, information has been obtained only for systems 
with Lyapunov functions or monotone systems. Generically, the large time behaviour 
of such systems is sufficiently trivial: it is a limit cycle or a rest point. 

Here a simple class of systems is described where attractors can be complicated. 
The key idea of the proposed construction is to take highly symmetrical unperturbed 
systems with Lyapunov functions and a small perturbation which breaks this symmetry. 

This paper develops the author’s previous works where reaction-diffusion systems 
with complicated behaviour were described by rigorous methods [12-14]. The model 
investigated here reminds one of coupled oscillator systems. This model, due to non- 
local interactions, has a richer set of attractors, than in [13, 141, where the attractor 
dimension was bounded from above., 

Finally, roughly speaking, it is shown that some artificial models can have arbitrary 
prescribed local attractors (if we neglect mathematical details connected with the hyper- 
bolicity). For such models, we can solve the inverse problem: namely, by changing 
model parameters, we can, with the help of explicit forms such as (4.17)-(4.22), obtain 
arbitrary prescribed attractors. 

These models can be constructed with the help of small non-local perturbations of 
the systems, which are invariant under some sufficiently rich symmetry group. 
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The suggested method can probably be applied to other problems, for example the 
perturbed Ginzburg-Landau equation or the Swift-Hoenberg equation. 
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Appendix 

This appendix contains the proofs of various assertions made in the main text. 

Proof ofproposition 2.1. We can use the maximum principle following [26]. Let us write 
the equation for amplitudes rj= lujl, which takes the form 

drj/dt=f(rj)rj+ ,U j=4( r )  (A.1) 
where h is a correction which is bounded. 

necessary to prove that 
Let us prove that U= (r: rj< C} is an invariant region. As follows from [26], it is 

F(r) . n = C  4nj<0 ifreaU ('4.2) 

where the vector F defines the right-hand side of (A.l) and n is the normal vector of 
the boundary a U. Consider the face of the cube U such that n= ( I ,  0, 0, . . . , 0). Then 
r ,  = C, r j g  C and F -  n is simply 4. So, we should estimate Fl under the conditions 

r l=C and r j 4 C .  (A.3) 

Ihjl<clgjl (A.4) 

One notices that in U 

where gj is defined by (3.21). One has from (2.4), (2.5) and (2.7) that 

Thus 

IAj. hjl < E C Z C ~ .  ('4.6) 

On the other hand, one finds (using (2.3)) that when (A.3) holds, one has (as follows 
from the assumptions onJ see section 2) 

f ( r , ) r , = f ( ~ ' ) ~ < - 6 .  ('4.7) 
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Thus, combining (A.7) and (A.6), one obtains 

FI < EC~C'- S <O 

for small E. This completes the proof. 

Proofof lemma 3.1. Using proposition 2.1 and estimates (2.3) and (2.12) one finds 

duj(t)/dt$2f'(l)uj(t)+c,uj(t)+ c2s j&,' (-4.9) 

and for j&n' 
duj (t)/dl = f ( O ) u j ( t )  +L(uj(t)) li;(u)l QC(lUIZ+E) (A.lO) 

In the first inequality 1) is real thus the right-hand side of (A.9) is negative for small E, 
and q = S .  Thus, the set {ujQF,j&2'2') is the invariant region. 

The second equation entails (one sets x= 1/2min(-2f(l), -f(O))) 

d/dt 1 ~ 1 ~ Q - 2 ~ 1  uI2 + Z ( ~ X ) - ' E ~  - X I  U]'+ CI uI3=p 

and p < 0 on a V6. Thus, V, is the invariant region. Therefore, one can conclude that 

Iu,(t)l <S for any t and j (A.11) 

if this holds at the initial moment. Then, using estimate (A.l l), one finds from (A.9) 
and (A.lO), that 

(A.12) d/dt 1 U) (t)12 Q -4 ~,( t ) l  + ct?. 
The last relation implies (3.23), at once completing the proof. 

Proof of Theorem 4.1. Excepting for the assertion regarding the attraction basins, all 
other assertions are already proved in section 4. Thus, one can suppose that there exist 
a set nk and connections J such that the corresponding attractors E ( ~ x ,  J )  coincide 
with & and @kaQ&. Also one can assume that the attraction basins 4% contain the 
small neighbourhood V, of &. Let us prove that if initial data lie in E(nX) then, 
beginning at some moment to, the solution u ( f )  is given at the small neighbourhood 
V6of theset Q={Iu,l=l forjeQA, lujl=Oforj@Zk}. 

Let us compare the trajectory u(t, E) of (2.1) with the unperturbed trajectory u(t, 0) 
supposing that at the initial moment the corresponding initial data coincide. 

It is easy to check using proposition 2.1 that 

lu(t, E ) - - U ( I ,  0)l <ccexp(cf). (A.13) 

The unperturbed trajectory reaches v6 during the time interval [0, t , ] ,  where to does 
not depend on E. Thus, estimate (A.13) yields the same fact for v6 and u(t, E), if E is 
small. 

Now the perturbation theory (described in sections 3 and 4) is used, completing the 
proof. 
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